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Abstract: A microscopic partition (MP) model of solution interaction initially proposed by Purnell and Vargas de Andrade 
has been shown to allow prediction of the reputed charge transfer or hydrogen bonding complexing stability constants ob­
tained by gas-liquid chromatography of almost 100 systems and also, for the first time, to allow correlation of the corre­
sponding GLC and nuclear magnetic resonance spectroscopic data. We now present evidence drawn from the literature relat­
ing to a further 80 systems containing, as one component of a binary solvent mixture, dodecanol, lauronitrile, di-n-nonyl 
phthalate, di-«-propyl tetrachlorophthalate, and quinoline, respectively, each system with a wide range of solutes of diverse 
types. In every case the previously presented basic relation KR = 0A^R(A)0 + <£ŝ R(S)° is shown to be obeyed over the whole 
range 4>\ = 0 -* 1. KR is the infinite dilution partition coefficient of a solute (D) between a binary liquid mixture of A and S 
(of volume fraction <£A and 0s) and the gas phase, while £R(A)° and ATR(S)0 are the corresponding quantities for pure A and 
pure S. The equation is now shown to apply equally well to systems where no specific interactions would be anticipated as to 
those where charge transfer or hydrogen bonding between D and A would be expected on current views. This indicates a like 
basis for the solution process in systems of widely diverse type and the further possibility, either that complexing interactions 
are of a less specific nature than has been supposed, or, indeed, as presently defined, do not occur at all. The implications for 
theories of solution and of complexing are discussed. The results clearly establish that a new class of nonelectrolyte solutions 
has been revealed and the name diachoric is suggested for these. 

Since its inception, gas-liquid chromatography (GLC) 
has been widely used for the study and measurement of 
physico-chemical properties, ranging from activity coeffi­
cients1,2 to vertical ionization potentials.3 In recent years 
there has been a rapidly developing interest in GLC studies 
of "weak complexes" anticipated to involve either charge 
transfer or hydrogen bonding interactions.4 Particular em­
phasis has been laid on the determination of equilibrium 
formation (stability) constants, K\, due to the nominal sim­
plicity and accuracy of the GLC technique. The two basic 
GLC methods used to determine K\ data, and the results 
obtained, have recently been reviewed by Wellington5 and 
by Laub and Pecsok.6 In outline, they are as follows. 

For the complexing reaction, 

A + D — AD 

the stoichiometric stability constant is defined as 

•Ki — C A D / C A C Q 

and, if such a reaction between a solute D and A, dissolved 
in inert solvent, S, is postulated to occur in addition to "nor­
mal" solution of D in S, GiI-Av and Herling7 have shown 
that the GLC retention equation is 

KR = # R ( S ) ° ( 1 +KX C A ) (1) 

Here, ATR is the infinite dilution partition coefficient for the 
complex-forming donor (acceptor) solute, D, between the 
mixed liquid phase containing acceptor (donor) of molar 
concentration, CA, and the gas phase. KR(S)0 is the corre­
sponding quantity for the same solute in the pure inert liq­
uid phase, S. The usual procedure is to employ a series of 
columns of varied composition and to plot values of KR, cal­
culated from retention volumes, against the corresponding 
value of CA. KX is then evaluated from the slope and inter­
cept of the resulting straight line. 

A second method, developed by Martire and Riedl,8 em­
ploys the following equation: 

where Vg
A and Kg

B are the specific retention volumes of an 
inert (noncomplexing) solute in the pure inert and pure 
complexing phases, respectively, while VS

D and Kg
c are the 

corresponding specific retention volumes of a complexing 
solute with the same phases. VA is the molar volume of the 
pure complexing phase, and 7 A is the relevant activity coef­
ficient, which is given by: 

_ Kg
BMWc 

7 A F g
A MW N 

where MWc and M W N are the complexing and inert sol­
vent molecular weights, respectively. 

This latter method has the advantage of requiring the de­
termination of only four specific retention volumes using 
two columns. The inert reference solvent of the Martire/ 
Riedl technique, however, must, as a matter of principle, be 
as nearly identical as possible, in every respect, to the nomi­
nally complexing solvent (e.g., molecular weight, molar vol­
ume, polarizability). This restriction is not nearly as serious 
as might be supposed since we know from experience that, 
for the same systems, the stability constants obtained9 via 
eq 1 are identical with those obtained via eq 2. 

Charge transfer interactions have also been investigated 
for many years by uv-visible10 and N M R " spectroscopic 
techniques. Attention has been turned in recent years to the 
problem of the negative formation constants so frequently 
indicated by these techniques.12 Furthermore, uv-visible 
and N M R derived values of K\ are commonly solvent de­
pendent even when positive results are obtained13 and are, 
in addition, often in serious disagreement with each other 
even when the same solvents and methods are used by the 
same workers in the same laboratory.14 Data processing by 
one or other of the several variants of the Benesi-Hilde-
brand (B-H) equation introduces some improvement in re­
producibility but does not significantly affect the situa­
tion.14 It has been a common observation of recent studies 
that a further disagreement with GLC derived data is also 
usual. This state of affairs led us to a more comprehensive 
study than usual of the various methods as a result of which 
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Table I. Densities of Pure Liquids at Stated Temperature 

Squalane 

P, 
g e m - 3 

0.7862 
0.7644 
0.7580 

T, °C 

56 
90 

100 

1-Dodecanol 
Lauronitrile 
Di-«-nonyl phthalate 
Di-n-propyl tetra-

chlorophthalate 

P, 
g cm - 3 

0.8091 
0.8054 
0.9078 
1.3274 

T, "C 

56 
56 

100 
90 

we were able to show15 that, for almost 100 systems, KR 
was precisely described by the equation 

.KR = 0A^R(A)0 + 4>S-KR(S)° (3) 

where KR(A)0 and A^R(S)0 are the partition coefficients of so­
lute D between pure liquids A and S, respectively, and the 
gas phase, and <f> represents a volume fraction in the solvent 
mixture. 

Consideration of the data led us to propose15 a micro­
scopic partition (MP) theory of solutions of the type under 
study since the commonly employed theories of the time 
were found to be incompatible with eq 3. Briefly, we pro­
posed that the liquids A and S exist in their macroscopic so­
lution as microscopically immiscible groups of like mole­

cules. On this basis, we showed that eq 3 could be derived 
readily and, furthermore, would describe both ideal and 
nonideal solutions. In addition, using this theory as a basis, 
we derived16 a general equation correlating, for the first 
time, and with remarkable accuracy, GLC and NMR data 
for a number of systems. 

In our earlier publications15'16 we developed the theoreti­
cal arguments generally and ignored the question of wheth­
er or not complexing or other specific interactions contrib­
uted to solubility. We propose to show in a subsequent 
paper (part IV) that the theory can readily be developed to 
accommodate entirely these matters and, further, to provide 
a detailed account of both the NMR and uv-visible meth­
ods for complexing studies, as well as correlating both with 
GLC. Here, we restrict ourselves to presenting further evi­
dence in support of the MP view of solution. The data are 
entirely drawn from the literature and comprise some 81 
systems; all those, in fact, which provide sufficient informa­
tion or require only detailed density measurements, to pro­
vide a test of the theory. As will be seen, despite the re­
markable range of solvents and solutes, each behaves in ex­
cellent accord with eq 3. In addition, we review briefly re­
sults described in a number of papers relating to the GLC 
performance of a range of mixed-solvent systems and show 

Table II. A^R(S)° and K^t^y" Values for Named Solutes and Solvents at Reported Temperatures 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 
2 
3 
4 
5 

C. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Name K R ( S ) ° 

A. Squalane and 1-Dodecanol at 56°C 
Methyl alcohol 
Ethyl alcohol 
/!-Propyl alcohol 
Isopropyl alcohol 
«-B uty 1 alcohol 
Isobutyl alcohol 
sec-Butyl alcohol 
tert-Butyi alcohol 
1-Pentyl alcohol 
Isopentyl alcohol 
2-Pentyl alcohol 
3-Pentyl alcohol 
2-Methyl-l-butyl alcohol 
3-Methyl-2-butyl alcohol 
ferf-Pentyl alcohol 
/leo-Pentyl alcohol 

12.5 
23.9 
50.5 
26.2 

134 
87.0 
72.6 
38.5 

321 
242 
191 
198 
259 
164 
119 
136 

B. Squalane and Lauronitrile at 56°C 
Nitromethane 
Nitroethane 
Nitropropane 
Ethyl cyanide 
w-Propyl cyanide 

29.3 
75.8 

191 
39.0 
97.6 

^R(A) 

110 
213 
512 
291 

1190 
1019 

751 
393 

4240 
2988 
1926 
1795 
2925 
1394 
1006 
1289 

370 
759 

1582 
367 
844 

Squalane and Di-n-propylTetrachlorophthalate at 90°C 
Benzene 
Toluene 
Ethylbenzene 
p-Xylene 
m-Xylene 
o-Xylene 
Isopropylbenzene 
w-Propylbenzene 
1 -M ethy 1-3-ethylbenzene 
l-Methyl-4-ethylbenzene 
1,3,5 -Trimethylbenzene 
l-Methyl-2-ethylbenzene 
tert-B uty lbenzene 
1,2,4-Trimethylbenzene 
Isobutylbenzene 
sec-Butylbenzene 
1 -M ethyl-3-isopropy lbenzene 
1,2,3-Trimethylbenzene 
l-Methyl-4-isopropy lbenzene 
1-M ethy 1-2-isopropy lbenzene 

71.8 
163 
329 
368 
373 
437 
524 
658 
729 
742 
849 
826 
882 
978 
994 

1003 
1113 
1192 
1178 
1239 

156 
360 
649 
809 
780 

1044 
934 

1215 
1333 
1397 
1566 
1735 
1499 
2203 
1731 
1669 
1802 
3051 
1915 
2261 

No. 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Name 

1,3-Diethylbenzene 
l-Methyl-3-n-propylbenzene 
n-JS uty lbenzene 
l-Methyl-4-n-propylbenzene 
1,2-Diethylbenzene 
1,3-Dimethyl-5-ethylbenzene 
1,4-Diethy lbenzene 
l-Methyl-2-rc-propylbenzene 
1,4-Dimethyl-2-ethylbenzene 
1,3-Dimethyl-4-ethy lbenzene 
1,2-Dimethyl-4-ethylbenzene 
1,2-Dimethyl-3-ethylbenzene 
1,2,4,5 -Tetramethy lbenzene 
1,2,3,5-Tetramethylbenzene 
1,2,3,4-Tetramethy lbenzene 

K R ( S ) 0 

1364 
1416 
1441 
1478 
1484 
1595 
1487 
1560 
1748 
1833 
1901 
2164 
2508 
2618 
3169 

D. Squalane and Di-M-nonyl Phthalate at 100°C 
Benzaldehyde 281 
Acetophenone 
Benzyl alcohol 
Phenol 
Ethoxybenzene 
Benzene 
Ethylbenzene 
«-B uty lbenzene 
n-Hexane 
/!-Heptane 
/i-Octane 
/i-Nonane 
rc-Decane 
/t-Undecane 
/t-Dodecane 

618 
462 
227 
416 

41.2 
200 
830 

33.7 
67.2 

140 
301 
630 

1315 

E. Diethyl Maleate and Quinoline at 35"C 
Isopentane 
/i-Pentane 
3-Methylpentane 
Cyclopentane 
M-Hexane 
Fur an 
Cyclohexane 
/!-Heptane 
Cyclohexene 
Benzene 
Thiophene 

37.4 
48.1 

116 
116 
131 
302 
294 
352 
505 

1239 
1704 

K R(A) 

2259 
2423 
2603 
2583 
2769 
2539 
2469 
3053 
3463 
3485 
3581 
4703 
5759 
5869 
8692 

884 
1906 
2233 
3068 

745 
58.6 

254 
980 

24.5 
49.0 
97.1 

202 
414 
847 

1734 

39.0 
57.1 

131 
167 
172 
227 
404 
508 
713 

1321 
1998 

Laub, Purnell / Microscopic Partitioning Theory of Solution 



32 

KR 

0-4 0-6 
04,DODECANOL 

Figure 1. Plot of ^R VS. 0A for the system 1-dodecanol in squalane at 
56°C. Numbers correspond to solutes listed in Table HA. 

that, although the data cannot be fully, quantitatively re­
duced, they, almost entirely, also show behavior in accord 
with the theory. 

Experimental Section 

In addition to those systems reported in part I, the literature 
contains information for the solubility of a wide range of solutes in 
the binary pairs, squalane with respectively 1-dodecanol, lauroni-
trile, di-M-nonyl phthalate and di-n-propyl tetrachlorophthalate, 
which require only the addition of density measurements for our 
purposes. In addition, data are available for a number of solutes in 
diethyl maleate-quinoline20 mixtures which, since they were given 
in terms of volume fraction, require no modification. 

Samples of the first five liquids quoted above were obtained, 
variously, from B.D.H., Applied Science, and Phase Separations, 
and being of the highest purity obtainable were used without fur­
ther treatment. 

The equipment used and the method of density measurement 
were exactly as described by Laub and Pecsok21 except that, for 
improved accuracy, the equipment was totally thermostated. Mea­
sured densities of the pure liquids agreed to within 0.1% of pub­
lished values, where comparison could be made. An important ob­
servation was that in no case was any excess volume of mixing indi­
cated by the data for the liquid mixtures. 

Results 

Density Measurements. The measured densities of the 
pure liquids at the temperatures relevant to the published 
data to be reviewed were as listed in Table I. In every in­
stance, the density of mixtures (pm;x) of squalane (S) with 
another liquid (A) was given to better than ±0 .1% by the 
equation 

Prnix""' = PS - 1 + H>A(pS - PA)/PSPA 

KR 

07 0-6 
0A. UUR0NITRILE 

Figure 2. Plot of KR vs. 0A for the system lauronitrile in squalane at 
56°C. Numbers correspond to solutes listed in Table HB. 

2500 

Figure 3. Plot of KR VS. 4>A for the system di-n-propyl tetrachloro­
phthalate in squalane at 900C. Numbers correspond to solutes listed in 
Table HC. 
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Figure 6. Plot of KR VS. <£A for the system di-H-nonyl phthalate in squa-
lane at 1000C. Numbers correspond to solutes listed in Table IID. 
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Figure 7. Plot of KR VS. 0A for the system quinoline in diethyl maleate 
at 3S0C. Numbers correspond to solutes listed in Table HE. 

where w\ is the weight fraction of A. Hence, the volume 
fraction of A, in each case, is given by 

</>A = (Pmix - P s ) / ( p A - P s ) 

Solubility Data. For all five mixed solvent systems the 
published solubility data were listed in terms of quantities 
other than the partition coefficients. Thus, we were required 
to convert the data. For this reason we quote in Table II the 
recalculated values of KR(A)0 and A"R(S)°. 

Figures 1-7 illustrate the whole of the data, for the so­
lutes and solvents specified in Table II, plotted in the form 
ATR against cj>\. In every instance, an excellent straight line 
is observed. Among the 400 experimental points plotted 
only ten or so lie any distance off the line drawn and, in 
most instances, no more than any one of these in its own set. 
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Thus, the 81 systems quoted may be taken, without excep­
tion, to obey eq 3 and, with the 98 systems listed in part I,15 

we now have recorded 179 systems of which only one,15 and 
that only marginally, does not accord. 

Discussion 
The remarkably catholic nature of eq 3 is demonstrated 

by the very considerable diversity of binary mixture type, 
and solute type for each, which are listed. Thus, for exam­
ple, squalane-1-dodecanol mixtures with alcohols, where 
hydrogen bonding might be anticipated, behave in exactly 
the same way as do mixtures of squalane-di-n-propyl tetra-
chlorophthalate and aromatics, where charge transfer has 
been postulated, as well as in the same manner as do mix­
tures of diethyl maleate-quinoline with alkanes and hetero­
cyclics where little, if any, specific interaction can be visual­
ized. Perhaps even more telling is the fact that the overall 
behavior of squalane-di-w-nonyl phthalate mixtures is the 
same with an aldehyde, a ketone, an alcohol, a phenol, an 
ether, aromatic hydrocarbons, and H-alkanes. 

Furthermore, in several instances, the plots show a nega­
tive slope which, if interpreted in terms of complexing or 
other specific interaction, would imply a physically mean­
ingless, negative equilibrium constant. 

It is clear that the data presented here and elsewhere es­
tablish that eq 3 represents a considerable generalization of 
solution behavior in a very wide range of systems. Before 
proceeding farther it seems worthwhile, therefore, to review 
earlier work which can now also be interpreted to support 
the present view. 

First, we turn to the method of solvent characterization 
for GLC use proposed, in terms of polarity, by Rohrsch-
neider,22 which is widely used. In effect, this method is 
merely an application of eq 3 since it relies on the idea of 
comparison of (retention) solution behavior of a given sol­
vent with some solute with that of some standard solvent 
mixture with the same solute. 

Primavesi,23 in a comparison of mixed bed and separate 
column GLC, found a simple (and the same) additivity of 
retention volume of several substances with weight compo­
sition of the solvent mixture in the two experimental situa­
tions. Similar observations have, more recently, been re­
ported by Singliar, Bobak, Brida, and Lukacovic24 and, in­
terestingly, even for paper chromatography by Soczewin-
ski.25 The most significant work of this type, however, is 
that of Hildebrand and Reilley26 who not only showed that 
pressure-corrected capacity factors (proportional to parti­
tion coefficients) were the same for each of several solutes 
with Carbowax/Silicone oil mixtures in a single column as 
with the pure materials in separate series columns but also 
presented their data in the form of an equation which is, es­
sentially, a version of our eq 3. 

Finally, we refer to the work of Keller and Stewart27 and 
Young.28 The former, in a consideration of the performance 
of mixed GLC solvents, derived an equation for the activity 
coefficient of a solute in terms of its activity coefficients in 
the pure liquids on the assumption of independent action of 
the two liquids. The equation is identical with that estab­
lished experimentally and theoretically by us in part I.15 In­
terestingly, Young,28 contemplating this equation, conclud­
ed that it could not possibly be relevant in practice since it 
could not be derived on the basis of regular solution theory. 
An interesting review of possibilities in mixed solvent GLC 
has been given very recently by Pilgrim and Keller29 but no 
theoretical development is offered. 

During recent months Muanda, Nagy, and Nagy30 have 
published a brief account of their results for two nominally 
charge transfer systems and shown that they too behave ac­
cording to eq 3. These authors propose, as have we, a micro­

scopic partition theory and indicate its application to NMR 
and uv-visible data. However, they introduce undefined 
quantities into their equations and little can thus be de­
duced in detailed terms. 

In conclusion, a number of workers31"41 have studied and 
reported on mixed solvent systems for GLC but, unfortu­
nately have not provided sufficient information for us to 
convert the data; indeed, it would be necessary completely 
to repeat the work. Further, in a number of these cases, the 
systems were clearly subject to strong liquid surface adsorp­
tion effects and in one instance39 we have established that 
the mixed solvent components only show limited miscibility. 
In the cases of all the systems not subject to the above criti-, 
cisms, it is noteworthy that plots of relative retention vol­
ume (i.e., relative partition coefficients) were linear in 
weight percent composition of the mixed solvent, which, of 
course, is proportional to volume fraction if there is no ex­
cess volume of mixing such as we have established for the 
systems reported on here and earlier, and is a common fea­
ture of these systems. Notable among this group are the pa­
pers by Touchstone and coworkers40,41 where linearity, as 
described, was exhibited for 91 steroids eluted from mixed 
silicone polymer liquid phases. 

The foregoing, clearly, provides very substantial further 
support for our general viewpoint. Indeed, we are unaware 
of any unqualified evidence to the contrary. 

In this, and the foregoing publication, we have presented 
quantitative evidence for 180 systems which included 11 
separate solvent pairs. Admittedly, in all but one case, one 
component of the solvent pair is an alkane, but the other 
component has ranged widely in chemical type, including 
an amine, an ether, a thioether, aromatic esters, and haloar-
omatic esters. Combined with the wide range of chemical 
type of solute used, the evidence of compatibility with one 
theory is remarkable. It is to be noted also that we have ad­
duced evidence for a number of other types of solvent mix­
ture as well as for polymer-polymer mixtures. We have 
stated elsewhere that regular and athermal solution theories 
cannot lead to eq 3, as confirmed by Young.28 The contrast 
in level of success self-evidently favors the MP approach. 

Since we have shown earlier that the model of an ideal 
solution yields eq 3 it is, of course, a possibility that all the 
binary systems discussed form ideal solutions with each 
other. This is highly unlikely since, as stated elsewhere,15 

none of the solutions of D in A or S was ideal, and further 
we would require to accept that mixtures as diverse as a 
very strong electron acceptor and an alkane, the one per­
haps cyclic and the other linear, were ideal. Since this possi­
bility seems, therefore, so remote we discount it from fur­
ther consideration. 

In the matter of specific interactions in solution it is clear 
that, since current methods rely entirely upon dilution ef­
fects, the MP theory must lead us to the conclusion that, as 
they stand, these methods cannot provide meaningful values 
of K\ whatever the nature of the interaction. This arises be­
cause, of course, in MP theory there is no effective dilution 
of component A by S. We shall develop this matter theoret­
ically later in conjunction with an extension of the theory to 
account for NMR and uv-visible data pertaining to reputed 
complexing systems. The implications of this, in other areas 
of chemistry, will clearly need evaluation. 

In conclusion, it is worth pointing out that the GLC tech­
nique can now be seen as providing a new approach to bina­
ry solution studies in that the volatile third component, D, 
being effectively at infinite dilution, acts as a molecular 
probe within the binary solvent mixture. The possible criti­
cism that liquid distribution within a GLC column is atypi­
cal and so is responsible for our findings can be immediately 
discounted in the light of the exceptional degree of correla-
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tion of GLC and N M R data reported by us earlier.16 

The work presented clearly indicates that a very substan­
tial group of systems forming a new class of solutions has 
been identified. In view of their behavior we propose the 
name diachoric for such solutions. 
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where 0 represents volume fraction. It has been shown1 that 
this equation is incompatible with current theory,1,3 but can 
readily be derived whether solution of D in A or in S is ideal 
or nonideal on the basis that, although A and S are macro-
scopically miscible, they are microscopically immiscible. 
The major consequence of this is that the local concentra­
tions of A or S in a mixture are identical with those that 
each exhibits in the pure state. Correspondingly, the local 
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Abstract: It has been shown earlier that for 180 systems wherein a volatile solute (D) is partitioned at infinite dilution be­
tween a mixture of two liquids (A and S) and the gas phase, the partition coefficient (KR) is related to those for D with pure 
A (KR(A)°) and pure S (KR ( S ) 0 ) via the volume fraction (<t>) relationship KR = 0AKR (A)° + </>SKR(S)°. This result has been 
shown to describe systems where explicit interaction of D with A may be expected, as well as for those where this is not so. 
Further, it applies where D, A, and S are of widely differing chemical type and molecular weight. It has also been shown that 
the simplest model consistent with the above behavior is that in which A and S are microscopically immiscible, hence the 
suggested name microscopic partition (MP) theory. We now establish that, irrespective of the detail of any specific interac­
tion postulated to occur between D and A or S, the above equation can always be derived to describe overall behavior. Fur­
ther, if for specific interaction in A there is a true interaction equilibrium quotient (XV), it can be shown that KiexPu = 
(/CI1KR(A)0VKR(S)0) + (AKR01KAZKR(S)0) where KR (A)0 1 and KR(S)0 are the partition coefficients of unreacted D in A and 
S, respectively, AKR0 ' ' is their difference, and V\ is the molar volume of pure A. This two-term equation, which is also de­
rived for the case of uv-visible and NMR studies, establishes that even if Ki' = 0, a value of KiexP" can be determined in 
practice and may be negative of limiting value, — VA. The equation also provides a quantitative definition of solvent effects in 
complexing studies. Correlation equations are also presented which defme the relationship of purely solution (usually GLC) 
data and those of either uv-visible or NMR studies. Examples of the correlation of GLC and NMR data have been given 
previously; an example involving uv-visible and NMR data is given here. The origins of discrepancies in published data are 
indicated. 
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